Logo	INST		Teaching Process
	Doc Code:	SKIT .Ph5b1.F02 No.: 1.0	
	Title:	Course Plan	Date: $11-07-2018$

Copyright ©2017. cAAS. All rights reserved.

Table of Contents

6. 17CS36 : Discrete Mathematical Structures 2
A. COURSE INFORMATION 2
7. Course Overview 2
8. Course Content 2
9. Course Material. 3
10. Course Prerequisites 3
B. OBE PARAMETERS 4
11. Course Outcomes 4
12. Course Applications 4
13. Articulation Matrix 5
14. Mapping Justification 6
15. Curricular Gap and Content. 7
16. Content Beyond Syllabus 7
C. COURSE ASSESSMENT 7
17. Course Coverage 7
18. Continuous Internal Assessment (CIA). 7
D1. TEACHING PLAN - 1 8
Module - 1 8
Module - 2 9
E1. CIA EXAM - 1 10
a. Model Question Paper - 1 10
b. Assignment -1. 11
D2. TEACHING PLAN - 2 13
Module - 3 13
Let $A=\{1,2,3,4,6\}$ and R be the relation on A defined $b y(a, b)$ belongs to R if and only if a is amultiple of b. write down R as a set of ordered pairs.14
Module - 4 15
E2. CIA EXAM - 2 16
a. Model Question Paper - 2 16
Define a relation R on B as $(a, b) R(c, d)$ if $a+b=c+d$. show that R is an equivalence relations. 1)reflexive 2) symmetric 3) Irreflexive 4) Anti symmetric 5) transitive relations 17
b. Assignment - 2 17
Define the following with one example for each i) Function ii) one-to one function iii) onto function 18
Let $f: R{ }_{\square} R g: R{ }_{\square} R$ be defined by $f(x)=X 2$ and $g(x)=x+5$. Determine fog and gof show thathe composition of two function is not commutative.. 18let A, B, C be any three non-empty sets and $A=B=C=\{$ set of real numbers\} ($B, g: f: B$ (C befunction defined by $f(a)=a+1$ and $g(b)=b 2+2$, find $f: A$ gof $(-2), b$. fog $(-2), c . g \circ f(x), d . g \circ g(x)$18
Let $A=\{1,2,3,4$,$\} f and g$ be functions from A to A given by: $f=\{(1,4)(2,1)(3,2)(4,3)\} g=\{(1,2)(2,3)(3,4)$$(4,1)\}$ Prove that f and g are inverses of each other.18
What is the partition of a set? If $R=\{(1,1),(1,2),(2,1),(2,2),(3,4)(4,3),(3,3),(4,4)\}$ defined on the set $A=$
\{1,2,3,4]. Determine the partition induced 18
If $R=\{(1,1),(1,2),(2,1),(2,2),(3,4)(4,3),(3,3),(4,4)\}$ defined on the set $A=\{1,2,3,4\}$. Determine thepartition induced.18
Define partial order. If R is a relation on $A=\{1,2,3,4\}$ defined by $X R Y$ if $x \mid y . p r o v e$ that (A, R) is a POSET. Draw its Hasse diagram 18
Draw the HasseDiagram representing the positive divisors of 36 18
D3. TEACHING PLAN - 3 19
Module - 5 19
E3. CIA EXAM - 3 20
a. Model Question Paper - 3 20
b. Assignment - 3 21
F. EXAM PREPARATION 22

Logo	INST	Teaching Process	Rev No.: 1.0
	Doc Code:	IT .Ph5b1.F02	Date: 11-07-2018
	Title:	Course Plan	Page: 2 / 26
Copyright ©2017. CAAS. All rights reserved.			
	If $R=\{(1,1),(1,2),(2,1),(2,2),(3,4)(4,3),(3,3),(4,4)\}$ defined on the set $A=\{1,2,3,4\}$. Determine the partition induced. \qquad 23		
	Define partial order. If R is a relation on $A=\{1,2,3,4]$ defined by $X R Y$ if $x \mid y$.prove that (A, R) is a POSET. Draw its Hasse diagram. .23		
	Draw the Hasse Diagram representing the positive divisors of 36........................... 23		
	Define a relation R on B as $(a, b) R(c, d)$ if $a+b=c+d$. show that R is an equivalence relations. 1)reflexive 2) symmetric 3) Irreflexive 4) Anti symmetric 5) transitive relations:		

Note : Remove "Table of Content" before including in CP Book
Each Course Plan shall be printed and made into a book with cover page
Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels
6. 17CS36 : Discrete Mathematical Structures
A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	BE
Year / Semester:	$2 /$ III	Academic Year:	$2018-19$
Course Title:	Discrete Mathematical Structures	Course Code:	$18 C S 36$
Credit / L-T-P:	$4 /$	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	75 Marks
CIA Marks:	30	Assignment	10
Course Plan Author:	Geetha Megharaj	Sign	Dt:
Checked By:		Sign	Dt:

2. Course Content

Mod ule	Module Content	Teaching Hours	Module Concepts	Blooms Level
1	Fundamentals of Logic: Basic Connectives and Truth Tables, Logic Equivalence - The Laws of Logic, Logical Implication - Rules of Inference. The Use of Quantifiers, Quantifiers, Definitions and the Proofs of Theorems	10	Propositional and Predicate Logic	L3,L4 Proof Techniques
2	Properties of the Integers: Mathematical Induction, The Well Ordering Principle - Mathematical Induction, Recursive Definitions. Fundamental Principles of Counting: The Rules of Sum and Product, Permutations, Combinations - The Binomial Theorem, Combinations with Repetition Relations and Functions: Cartesian Products and Relations, Functions - Plain and One-to-One, Onto Functions. The Pigeon- hole Principle, Function Composition and Inverse Functions. Properties of Relations, Computer Recognition - Zero-One Matrices and Directed Graphs, Partial Orders - Hasse Diagrams, Equivalence	Counting Principles	L4	

INST		Teaching Process
Doc Code:	SKIT Ph5b1.F02	

Copyright ©2017. cAAS. All rights reserved.
Relations and Partitions Relations 4 The Principle of Inclusion and Exclusion: The Principle of Inclusion and Exclusion, Generalizations of the Principle, Derangement - Nothing is in its 10 Generalized Principle of Inclusion and L4 Right Place, Rook Polynomials. Recurrence Relations: First Order Linear Recurrence Relation, The Second Order Linear Homogeneous Recurrence Relation with Constant Coefficients. Exclusion Recurrence Relations 5 Introduction to Graph Theory: Definitions and Examples, Sub graphs, Complements, and Graph Isomorphism, Vertex Degree, 10 Graph Theory L4 Euler Trails and Circuits, Trees: Definitions, Properties, and Examples, Routed Trees, Trees and Sorting, Weighted Trees and Prefix Codes Properties and Application of Trees

3. Course Material

Mod ule	Details	Available
1	Text books	
	1. Ralph P. Grimaldi: Discrete and Combinatorial Mathematics, . 5 th Edition, Pearson Education. 2004.	In Lib
2	Reference books	
	1. Basavaraj S Anami and Venakanna S Madalli: Discrete Mathematics - A Concept based approach, Universities Press, 2016 2. Kenneth H. Rosen: Discrete Mathematics and its Applications, 6 th Edition, McGraw Hill, 2007. 3. Jayant Ganguly: A Treatise on Discrete Mathematical Structures, SanguinePearson, 2010. 4. D.S. Malik and M.K. Sen: Discrete Mathematical Structures: Theory and Applications, Thomson, 2004.	REQ. GIVEN In LIB
3	Others (Web, Video, Simulation, Notes etc.)	
		Not Available

4. Course Prerequisites

SNo	Course Code	Course Name	Module / Topic / Description	Sem	Remarks	Blooms Level

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B. 5 .

Logo

INST		Teaching Process
Doc Code:	SKIT .Ph5b1.F02	

Copyright ©2017. cAAS. All rights reserved.
B. OBE PARAMETERS

1. Course Outcomes

After studying this course students will be able to

\#	COs	Teach. Hours	Concept	Instr Method	Assessmen t Method	Blooms' Level
18CS36.1	Verify the validity of an argument using Propositional and Predicate Logic	7	Propositiona lra \quad and Predicate Logic	Lecture	Assignment and Unit Test	Validate L4
18CS36.2	Construct proofs by applying Direct proof, Indirect proof and Proof by contradiction methods to establish Mathematical Theorems	03	Proof Techniques	Lecture	Assignment	Construct L5
18CS36.3	Solve problems by applying elementary counting techniques such as Permutation, Combination, Combination with Repetition and Binomial Expansion	07	Counting Principles	Lecture	Assignment and Unit Test	Solve and Apply L3
18CS36.4	Construct proofs by applying Mathematical Induction and to define recursive Definitions for Recursive Functions	03	Mathematic al Induction and Recursive Definitions	Lecture	Assignment and Unit Test	Construct L5
18CS36.5	Identify and apply properties of Functions in different areas of computing.	05	Properties and types of Functions	Lecture	Assignment and Unit Test	Apply L3
18CS36.6	Understand and apply properties of relations in different domains of computing.	05	Properties and types of Relations	Lecture and Tutorial	Assignment and Unit Test	Apply L3
18CS36.7	Understand and Apply generalized principle of Inclusion and Exclusion and Rook polynomial to solve problems	08	Generalized Principle of Inclusion and Exclusion	Lecture	Assignment and Unit Test	Understand /Apply L2,L4
18CS36.8	Apply First Order and Second order Linear Recurrence Relation to solve problems in different Domains	02	Recurrence Relations	Lecture	Assignment and Unit Test	Solve / Apply L3
$\begin{gathered} 18 \mathrm{CS} 36.0 \\ 9 \end{gathered}$	Understand types and Properties of Graphs and verify Graph Isomorphism, identify Euler circuits.	5	Properties and Types of Graphs	Lecture	Assignment and Unit Test	Understand /Verify L2 ,L4
18CS36.10	Understand the properties and types of trees and apply to construct spanning trees, prefix codes and weighted tree	5	Properties,ty pes and applications of Trees	Lecture	Assignment and Unit Test	understand /Construct L2 L5
-	Total	50	-	-	-	-

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	CO	Level
1	Propositional and Predicate Logic used for Designing algorithms and circuits	CO 1	L 4
2	Proof Techniques to Analyze the Algorithms and prove the facts	CO 2	L 3
3	Properties of Integers in Cryptography	CO 3	L 4

CS

INST	
Doc Code:	SKIT. Ph5b1.F02
Title:	Course Plan

Copyright ©2017. cAAS. All rights reserved.

4	Able to apply to Prove Theorems	CO 4	L 4
5	Apply Relation concepts in Database Management Systems	CO 5	L 4
6	Apply to programming Language and static analysis	CO	L 3
7	Apply to solve counting problems in statistics and probability	CO 7	L 4
8	used to develop computer Algorithms	CO 8	L 4
9	Graph Theory concepts applied to design efficient algorithms to solve various Computer network problems	CO 9	L 4
10	Concepts of Trees applied to design and analyze efficient data structure algorithms.	CO 10	L 3

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO - PO MAPPING)

-	Course Outcomes	Program Outcomes												
\#	cos	PO1			$3 \mathrm{PO} 4 \mathrm{~F}$	$\mathrm{PO} 5$	$\begin{gathered} \mathrm{PO} \\ 6 \end{gathered}$	PO			$\begin{gathered} \mathrm{PO} 1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{PO} 1 \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{PO} 1 \\ 2 \end{gathered}$	Level
18CS36.1	Verify the validity of an argument using Propositional and Predicate Logic Illustrate the basic concepts of mathematical logic and predicate calculus	2	3	3										L4
18CS36.2	Construct proofs by applying Direct proof, Indirect proof and Proof by contradiction methods to establish Mathematical Theorems	3	2											L5
18CS36.3	Solve problems by applying elementary counting techniques such as Permutation, Combination, Combination with Repetition and Binomial Expansion	3	2											L3
18CS36.4	Construct proofs by applying Mathematical Induction and to define recursive Definitions for Recursive Functions	2	2											L5
18CS36.5	Identify and apply properties of Functions in different areas of computing.	3	2	2										L3
18CS36.6	Understand and apply properties of relations in different domains of computing.	2	2											L3
18CS36.7	Understand and Apply generalized principle of Inclusion and Exclusion and Rook polynomial to solve problems	3	3											L2,L4
18CS36.8	Apply First Order and Second order Linear Recurrence Relation to solve problems in different Domains Construct recurrence relations and generating functions.	2	3											L3
18CS36.09	Understand types and Properties of Graphs and verify Graph Isomorphism, identify	3	3	2										L2,L4

Logo
INST

Doc Code: SKIT .Ph5b1.FO2
Title: Course Plan
Copyright ©2017. cAAS. All rights reserved.
Euler circuits.
Analyze the importance of Graph Theory and its real time applications.
18CS36.10 Understand the properties and types of trees and apply to construct spanning trees, prefix codes and weighted tree

Note: Mention the mapping strength as 1, 2, or 3

4. Mapping Justification

Mapping		Justification	Mapping
CO	PO	-	-
CO1	PO1	The Validity and correctness of facts can be verified Using predicate and propositional logic	2
CO1	PO 2	Predicate logic identifies sequence of valid statements to produce required outputs in designing algorithms.	3
CO1	PO 3	Able to construct logical proofs as logic plays a major role in formal languages and design of hardware and software.	3
CO 2	PO1	Proof Techniques used to Analyze the Algorithms and prove the known facts.	3
CO 2	PO 2	The proof techniques can be used to verify the complex engineering solutions	2
CO 3	PO1	Knowledge of Counting techniques required to solve problems of statistics and probability	3
CO 3	PO 2	Counting techniques applied to solve problems of statistics and probability	2
CO 4	PO1	Knowledge of Mathematical Induction required to prove known facts	2
CO 4	PO 2	The proof techniques can be used to verify the complex engineering solutions	2
CO 5	PO1	The knowledge about Functions is required to understand its role in analysis of algorithms	3
CO 5	PO2,PO3	Function concepts are used to design and analyse the algorithms.	2
CO6	PO1	The knowledge of Relations required to understand its role in analysis of algorithms	2
CO6	PO2,PO3	concepts of Relations are used to design and analyse the algorithms.	2
CO7	PO1	Knowledge of principle of inclusion and exclusion required to solve counting problems	3
CO7	PO 2	principle of inclusion and exclusion applied to solve counting problems	3
CO8	PO1	Knowledge of recurrence relations required to write efficient recursive functions	2
CO8	PO 2	Recurrence relations helps to analyze the complexity of algorithms	3
COg	PO1	Knowledge of Graph theory is required to understand concepts of Computer network.	3
COg	PO 2	Graph theory applied to alalyse efficient algorithms to solve various Computer network problems	3
COg	PO 3	Graph theory used to design and analyze efficient algorithms to	2

Logo	INST	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT .Ph5b1.F02 Date: 11	Date: 11-07-2018
	Title:	Course Plan Page: 7	Page: 7 / 26
ppright ©2017. cAAS. All rights reserved.			
		solve various Computer network problems	
CO10	PO1	Knowledge of Trees is required to understand data structure concepts.	3
CO10	PO 3	Concepts of Trees is applied to design and analyze efficient data structure algorithms.	3

Note: Write justification for each CO-PO mapping.
5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A. 4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

	Title	Teaching	No. of question in Exam						CO	Levels
ule \#		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra Asg	SEE		
1	Fundamentals of Logic:	10	2	-	-	1	1	2	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2 \end{aligned}$	L4, L3
2	Properties of the Integers, Fundamental Principles of Counting	10	2		-	1	1	2	$\begin{aligned} & \mathrm{CO}_{3} \\ & \mathrm{CO}_{4} \end{aligned}$	L4
3	Relations and Functions:	10	-	2	-	1	1	2	$\begin{aligned} & \mathrm{CO} 5 \\ & \mathrm{CO} 6 \end{aligned}$	L3, L4
4	The Principle of Inclusion and Exclusion, Recurrence Relations	10	-	2	-	1	1	2	$\begin{aligned} & \mathrm{CO} 7 \\ & \mathrm{Co8} \end{aligned}$	L4
5	Introduction to Graph Theory	10	-	-	4	1	1	2	$\begin{aligned} & \mathrm{CO} 9 \\ & \mathrm{CO} 10 \end{aligned}$	L3,L4
-	Total	50	4	4	4	5	5	10	-	-

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Logo	INST	

Copyright ©2017. cAAS. All rights reserved.
2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam - 1	30	CO1, CO2, CO3, CO4	L2,L3,L4
CIA Exam - 2	30	$\mathrm{CO}_{5}, \mathrm{CO} 6, \mathrm{CO} 7, \mathrm{C} 08$	L3,L4
CIA Exam - 3	30	CO9, CO10	L1,L2,L3,L4
Assignment-1	10	CO1, $\mathrm{CO} 2, \mathrm{CO} 3, \mathrm{CO} 4$	L2,L3,L4
Assignment - 2	10	CO5, CO6, CO7, CO8	L3,L4
Assignment - 3	10	CO9, CO10	L2,L3,L4
Seminar - 1			
Seminar-2			
Seminar-3			
Other Activities - define Slip test			
Final CIA Marks	40	-	-

Note : Blooms Level in last column shall match with A. 2 above.

D1. TEACHING PLAN - 1
Module - 1

Title:	Fundamentals of Logic:	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand and use notations of Propositional Logic, understand and apply rules of Logic to identify logically equivalent expressions, understand and apply Rules of Inference to validate Quantified arguments	CO1	L4
2	Apply Direct, Indirect and Proof by contradiction methods to establish Mathematical Theorems	CO 2	L4
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Basic Connectives and Truth Tables.	C01	L2
2	Logic Equivalence - The Laws of Logic and problems	C01	L2
3	Logical Implication - Rules of Inference	C01	L2
4	Problems on Logical Implication - Rules of Inference	C01	L4
5	Quantifiers	C01	L2
6	Definition and examples for Quantifiers	C01	L2
7	The Use of Quantifiers	C01	L3
8	Definitions and the Proofs of Theorems	C 02	L3
9	Problems on Proof of Theorems	CO 2	L4
10	Problems on Proof of Theorems	C02	L4
11			
12			
13			
14			
15			
16			
c	Application Areas	CO	Level
1	Programming	CO1	L3
2	Analysis of Algorithms	CO 2	L4

Logo	INST	Teaching Process	Rev No.: 1.0	
	Doc Code:	SKIT .Ph5b1.F02	Date: 11-07-2018	
	Title:	Course Plan	Page: 9 / 26	
Copyright ©2017. CAAS. All rights reserved.				
d	Review Questions		-	-
1	Prove the following logical equivalence i) $((p \vee q) \Lambda(p v \sim q) \vee q] \quad(p \vee q) \quad$ ii) $p \rightarrow(q \rightarrow r) \leftrightarrow(p \wedge q) \rightarrow r$		CO1	L4
2	For any statements p, q prove that i) $\sim(p \downarrow q)$ ($\sim p \uparrow \sim q$) ii) $\sim(p \uparrow q) \quad(\sim p \downarrow \sim q)$		CO1	L4
3	Write converse, inverse and contrapositive of the statement " if a triangle is not isosceles then it is not equilateral.		CO1	L3
4	Establish validity of the argument. $(p \rightarrow q) \wedge(q \rightarrow r \wedge s) \wedge(\sim r v(\sim t \vee u)) \wedge(p \wedge t$) $\rightarrow \mathrm{u}$		CO1	L4
5	Give indirect proof of the statement "The product of two even integers is an even integer"		CO 2	L4
6	Write down negation of the following statements. i) For all integers n, if n is divisible by 2 then n is odd ii) if k, m, n are any integers, where ($k-m$) and $(m-n)$ are odd then $(k-n)$ is even.		CO1	L3
7	Verify the principle of duality for the following logical equivalence. $\sim(p \vee q) \rightarrow(\sim p \vee(\sim p \vee q)) \leftrightarrow(\sim p \vee q)$		CO1	L4
8	Establish validity of the argument```(~ pv~q) }->(r\wedges r}->\textrm{t ~ therefore p```		CO1	L4
9	Prove that if m is an even integer then $m+7$ is odd integer by contradiction proof method.		CO 2	L4
10	Test the validity of the argument " If Raju goes out with his friends, he will not study. If Ravi do not study his father become angry. His father is not angry. Therefore Ravi has not gone out with his friends.		CO1	L4
11				
e	Experiences		-	-
1			CO 1	L2
2				
3				
4			CO 3	L3
5				

Module - 2

Title:	Properties of Integers	Appr Time:	10 Hrs
\mathbf{a}	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Solve counting problems by applying elementary techniques such as Permutation, Combination, Combination with Repetition and Binomial Expansion	CO 3	L 4
2	State and construct the Principle of Mathematical Induction proofs for arguments involving summations, inequalities, and divisibility and to define recursive Definitions for Recursive Functions	CO 4	L 4
\mathbf{b}	Course Schedule	CO	Level
Class No Module Content Covered	CO 4	L 2	
1	Properties of the Integers: Mathematical Induction	CO 4	L 2
2	The Well Ordering Principle - Mathematical Induction	CO 4	L 3
3	Recursive Definitions, Examples	CO 3	L 2
4	Fundamental Principles of Counting: The Rules of Sum and Product,		

INST		Teaching Process
Doc Code:	SKIT .Ph5b1.Fo2	Rev.: 1.0
Title:	Course Plan	Date: 11-07-2018

Logo	INST		Teaching Process
	Doc Code:	SKIT .Ph5b1.Fo2	Dev.: 1.0
Title:	Course Plan	Page: $11 / 26$	

Copyright ©2017. cAAS. All rights reserved.

E1. CIA EXAM - 1
a. Model Question Paper - 1

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

[^0]| Logo | INST | | Teaching Process |
| :---: | :---: | :--- | :--- |
| | Doc Code: | SKIT .Ph5b1.Fo2 | Date: 11 1-07-2018 |
| | Title: | Course Plan | Page: $12 / 26$ |

Crs Code:	17 CS36	Sem:	III	Marks:	5	Time:
Course:	Discrete Mathematical Structures	$90-120$ minutes				

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1		Define tautology. Prove that for any propositions p,q,r the following compound proposition is a tautology: $[(p \vee q)\{(p \rightarrow r) \boldsymbol{\Lambda}(q \rightarrow r)]] \rightarrow r$	5	CO1	L3
2		Let p, q be primitives statements for which implication $\mathrm{p} \rightarrow \mathrm{q}$ is false. Determine the truth values of the following. i)pVq ii) (p $\vee q) \quad(q \vee p)$		CO1	L2
3		Find inverse, converse and contrapositive of the following If the statement is divisible by 21 then it is divisible by 7		CO1	L2
4		Find inverse, converse and contra positive of the following: if $\mathrm{O}+\mathrm{O}=0$ then $2+2=1$	5	CO1	L2
5		Let p,q,r be the propositions having truth values 0,0 and 1respectively.find the truth values of the following compound propositions $\text { I) }(p \wedge q) \rightarrow \mathrm{rii}(p) \rightarrow(q \wedge r) \text { iii } p \wedge(r \rightarrow q \text { iv) } p \rightarrow(\mathrm{q} \rightarrow(\neg r))$		CO1	L2
6		Establish validity of the following arguments $\begin{aligned} & \forall x,[p(x) \vee q(x)] \\ & \exists x, \neg p(x) \\ & \forall x,[\neg r(x) \vee r(x)] \\ & \forall x,[s(x) \rightarrow \neg r(x)] \\ & \text { therefore } \exists x \neg s(x) \end{aligned}$		CO1	L4
7		Establish validity of the argument: $\begin{aligned} & \mathrm{p} \rightarrow \mathrm{q} \\ & \mathrm{q} \rightarrow(r \wedge s) \\ & \neg r \vee(\neg t \vee u) \\ & p \wedge t \\ & \text { therefore } \mathrm{u} \end{aligned}$		CO1	L4
8		Define dual of logical statement. Verify principle of duality for the following logical equivalence $[\neg(p \wedge q) \rightarrow \neg p \vee(\neg p \vee q)] \Leftrightarrow(\neg p \vee q)$		CO1	L3
9		Define converse, inverse and contrapositive of a conditional statement. Also state converse, inverse and contrapositive of the statement " If a triangle is not isosceles, then it is not equilateral"		CO1	L3
10		Give i)Direct Proof ii) Indirect proof ii) Proof by contradiction, for the statement " If n is an odd integer, then $\mathrm{n}+11$ is an even integer		CO 2	L4
11		Prove that for all integers k and l , if k and l both are odd, then $\mathrm{k}+\mathrm{l}$ is even and kl is odd by direct proof.		CO 2	L4
12		Give i)Direct proof ii)proof by contradiction for the following statement. " If n is an odd integer, then $\mathrm{n}+9$ is an even integer		CO 2	L4
13		Prove that every positive integer $n \geqslant 24$ can be written as sum of 5's and 7's.		CO2	L3
14		Prove that for all real numbers x and y, if $x+y>100$, then $x>50$ or $y>50$		CO 2	L3

	INST	Teaching Process	Rev No.: 1.0	
	Doc Code: SKIT .Ph5b1.Fo2		Date: 11-07-2018	
	Title: Course Plan		Page: 13 / 26	
Copyright O2017. cAAS. All rights reserved.				
15		Find number of arrangements of letters of the word "MASSASAUGA"	CO3	L3
16		a) How many arrangements are there of all letters in SOCIOLOGICAL " b)In how many arrangements A and C are together c)In how many arrangements all Vowels are adjacent?	CO 3	L3
17		A committee of 15 having 9 women and 6 men to be seated at a circular table. In how many ways seats be arranged so that no two men seated next to each other	CO 3	L3
18		Find number of possible arrangements of letters of the word " TALLAHASSEE" ?. How many arrangements have no adjacent A's	CO 3	L3
*19		In how many ways can we distribute 7 apples and 6 oranges among 4 children so that each child gets at least 1 apple	CO 3	L3
20		Derive formula to find number of compositions of 7	CO_{3}	L4
21		Consider compositions of 20 I) how many have each summand Even? ii) how many have each summand multiple of 4	CO 3	L3
22		How many times print statement executed in the following program segment? For $\mathrm{i}=1$ to 20 for $j=1$ to l do for $k=1$ to k do print(($\left.\left(^{*} j\right)+\left(k^{*} m\right)\right)$	CO 3	L3
23		Find coefficient of $a^{5} b^{2}$ in the expansion of (2a-3b) ${ }^{7}$	CO_{3}	L3
24			CO_{3}	L3
25		Find coefficient of $x^{4} y^{4}$ in the expansion of $\left(2 x^{3}-3 x y^{2}+z^{2}\right)^{16}$	CO_{3}	L3
26		Find coefficient of $a^{2} b^{3} c^{2} d^{5}$ in the expansion of $(a+2 b-3 c+2 d+5)^{16}$	CO_{3}	L3
27		Prove by mathematical Induction that, for every positive integer $n, 5$ divides n^{5}-n	CO 4	L4
28		By mathematical induction prove that, for every positive nteger n,the number $A^{n}=5^{n}+2 \cdot 3^{n}-1+1$ is multiple of 8	CO 4	L4
29		How many positive integers n can we form using the digits 3,4,4,5,5,6,7 if we want n to exceed 5,000,000	CO 3	L3
30		For Fibonacci sequence Fo,F1,F2......... Prove that $\left.F n=\frac{1}{\sqrt{5}} l\left(\frac{(1+\sqrt{5})}{2}\right)^{n}-\left(\frac{(1-\sqrt{5})}{2}\right)^{n}\right]$	CO 4	L4
31		If Lo, L1, L2... are Lucas numbers, prove that $\operatorname{Ln}=\left[\left(\frac{(1+\sqrt{5})}{2}\right)^{n}+\left(\frac{(1-\sqrt{5})}{2}\right)^{n}\right]$	CO 4	L4
32		Prove that for each $n n \in z^{+i}$ $1^{2}+2^{2}+3^{2}+\ldots \ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$	CO 4	L4
33		Find explicit definition of the sequence defined by a1=7, $a^{n}=2 a^{n-1}+1$ for $n \geqslant 2$	CO 4	L2
34		Obtain recursive definition for the sequence an in each of the following I) $a_{n}=5^{n}$ ii) $a_{n}=2-(-1)^{n}$	CO 4	L3
40		Give i)Direct Proof ii) Indirect proof ii) Proof by contradiction, for the statement " If n is an odd integer, then $\mathrm{n}+11$ is an even integer		L4
41				

Logo
INST

Teaching Process
Rev No.: 1.0
Doc Code: SKIT .Ph5b1.Fo2
Date: 11-07-2018
Title: Course Plan
Page: 14 / 26
Copyright ©2017. cAAS. All rights reserved.
D2. TEACHING PLAN - 2
Module - 3

Title:	Relations and Functions	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	State and Identify plain, one to one and onto Functions, composition and Inverse Functions and use of Pigeon Hole principle to solve mapping problems.	CO 5	L3
2	Understand Relations and their types, Identify partition induced by an Equivalence relation and Hasse Diagram representation of Partial Order Relations and External elements of POSET	CO6	L4
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Relations and Functions: Cartesian Products and Relations	C5	L2
2	Functions - Plain, One-to-One and Onto	C5	L3
3	The Pigeon-hole Principle, Examples	C5	L4
4	Function Composition and Inverse Functions	C5	L4
5	Properties of Relations, Computer Recognition - Zero-One	C5	L3
6	Matrices and Directed Graphs	C5	L3
7	Partial Orders - Hasse Diagrams	C6	L4
8	Equivalence Relations and Partitions.	C6	L4
9	Problems Equivalence Relations	C6	L4
10	Problems Inverse Functions	C6	L3
11			
12			
13			
14			
15			
16			
c	Application Areas	CO	Level
1	Programming	CO1	L3
2	Data Structures and Analysis of Algorithms	CO 2	L4
d	Review Questions	-	-
1	Let $A=\{2,3,4,6,8,12,24\}$ and let<= denotes the partial order of divisibility that is $x<=y$ means $x \mid y$. Let $B=\{4,6,12\}$. Determine: a)All upper bounds of B, b) All lower bounds of B, c) Least upper bound of B, d)Greatest lower bound of B	CO6	L3
2 Let	$A=\{1,2,3,4,6\}$ and R be the relation on A defined by(a,b) belongs to R if and only if a is a multiple of b. write down R as a set of ordered pairs.	CO6	L3
3	Prove that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are invertible functionn then g of $: A \rightarrow C$ is an invertible function and $(\mathrm{gof})^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}$.	Co5	L4
4	Let $A=\{1,2,3,4,5$.Define a relation then $A X A$ by ($x 1, y 1$) $R(x 2, y 2)$ if and only if $x 1+y 1=x 2+y 2$. i)Determine whether R is an equivalence relation on $A X A$. ii)Determine equivalence class [(1,2)] [(2,5)].	Co5	L4
5	Find the number of ways of distributing four distinct objects among three identical containers, with some container(s) possibly empty.	Co5	L4
6	Let f,g,h be functions from Z to Z defined by	Co5	L4

Title:	Principle of Inclusion and Exclusion	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-		-	Level
1	Understand and Apply generalized principle of Inclusion and Exclusion and Rook polynomial to solve problems	CO7	L4
2	Apply First Order and Second order Linear Recurrence Relation to solve problems on integer series	CO8	L4
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	The Principle of Inclusion and Exclusion:	CO7	L2
2	Problems Principle of Inclusion and Exclusion.	CO7	L3
3	Generalizations of the Principle.	CO7	L3
4	Derangements - Nothing is in its Right Place,	CO 7	L4
5	Derangements - examples Contd.....	CO7	L4
6	Rook Polynomials.	CO7	L3
7	Problems Rook polynomial	CO7	L4
8	Recurrence Relations: First Order Linear Recurrence Relation,	CO8	L4
9	The Second Order Linear Homogeneous Recurrence Relation with Constant Coefficients	CO8	L4
10	Problems	CO8	L4
11			
12			
13			

Logo	INST	Teaching Process	Rev No.: 1.0	
	Doc Code:	SKIT .Ph5b1.F02	Date: 11-07-2018	
	Title:	Course Plan	Page: 17 / 26	
Copyright ©2017. cAAS. All rights reserved.				
2				
3				
4			CO8	L3
5				

E2. CIA EXAM - 2
a. Model Question Paper - 2

Crs Code: $\operatorname{CS501PC}$	Sem:	I	Marks:	30	Time:	75 minutes

Course: Design and Analysis of Algorithms

Logo	INST		Teaching Process
	Doc Code:	SKIT .Ph5b1.Fo2	Rev No.: 1.0
Title:	Course Plan	Page: $18 / 26$	

Copyright ©2017. cAAS. All rights reserved.

d

b. Assignment - 2

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	CS501PC	Sem:	I	Marks:	$5 / 10$	Time:	$90-120$ minutes
Course:	Design and Analysis of Algorithms						

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1		,2,3,4 $\quad B=\{2,5\} \quad C=\{3,4,7\}$ Determine: 1)AXB 2) $B X A$ 3) $A \cup(B X C)$ 4) (AUB)XC 5) $(A X C) \cup(B X C)$		CO 5	L4
2		, 2, 3\} find $a . R_{1}=\{(1,1)(2,2)(3,3)\}$ b. $R_{2}=\{(1,2)(2,1)(1,3)(3,1)(2$, 3), $(3,2)]$ c. $R_{3}=A \times A$		CO 5	L4
3		Let a function $f: R \rightarrow R$ be defined by $f(x)=x^{2}+1$. Find the images of $A_{1}=\{2,3], A_{2}=[-2,0,3], A_{3}=(0,1)$ and $A 4=[-6,3]$.		Co5	L4
4		Define the following with one example for each i) Function ii) one-to one function iii) onto function.		Co5	L4
5		$f: R 』 R g: R _R$ be defined by $f(x)=X^{2}$ and $g(x)=x+5$. Determine fog and gof show that he composition of two function is not commutative.		Co5	L4
6		State the pigeonhole principle. An office employs 13 clerks. Show that at least 2 of them will have birthdays during the same month of the year.		Co5	L4
7		let A, B, C be any three non-empty sets and $A=B=C=\{$ set of real numbers) (B, g: f: B (C be function defined by $f(a)=a+1$ and $g(b)=b 2+2$, find $f: A$ gof (-2), b. fog (-2), c. gof(x), d. gog(x)		$\mathrm{Co5}$	L4
8		Let $A=\{1,2,3,4\}$,$f and g$ be functions from A to A given by: $f=\{(1,4)$ $(2,1)(3,2)(4,3)\} \quad g=\{(1,2)(2,3)(3,4)(4,1)]$ Prove that f and g are inverses of each other.		Co5	L4
9		What is the partition of a set? If $R=\{(1,1),(1,2),(2,1),(2,2),(3,4)$ $(4,3),(3,3),(4,4)\}$ defined on the set $A=\{1,2,3,4\}$. Determine the partition induced.		Co6	L3
10		If $R=\{(1,1),(1,2),(2,1),(2,2),(3,4)(4,3),(3,3),(4,4)\}$ defined on the set $A=\{1,2,3,4\}$. Determine the partition induced.		Co6	L3
11		Define partial order. If R is a relation on $A=\{1,2,3,4\}$ defined by $X R Y$ if x ly.prove that (A, R) is a POSET. Draw its Hasse diagram.		Co6	L3
12		Draw the HasseDiagram representing the positive divisors of 36		Co6	L3
13		Let $A=\{1,2,3,4,5\}$. Define a relation R on $A X A$ by $(x 1, y 1) R(x 2, y 2)$ if and only if $x 1+y 1=x 2+y 2$		Co6	L3
14		In how many ways can one arrange the letters in the word CORRESPONDENTS so that i)there is no pair of consecutive identical letters? ii)There are exactly two pairs of consecutive identical letters?		Co7	L4
15		An apple,a banana,a mango and an orange are to be distributed to four boys B_{1}, B_{2}, B_{3} and B_{4}. The boys B_{1} and B_{2} do not wish to have apple,the boy, B_{3} does not want banana or		Co7	L4

CS

D3. TEACHING PLAN - 3
Module - 5

Title:	Introduction to Graph Theory	Appr Time:	10 Hrs				
\mathbf{a}	Course Outcomes	-	Blooms				
-	Understand types and Properties of Graphs and verify Graph Isomorphism, identify Euler circuits.					CO9	L3
$\mathbf{1}$	Understand the properties and types of trees, construction of spanning trees, prefix codes and weighted tree	CO10	L4				
\mathbf{b}	Course Schedule						
Class No	Module Content Covered	CO	Level				
1	Introduction to Graph Theory: Definitions and Examples						
2	Sub graphs, Complements						
3	Graph Isomorphism, Examples						
4	Vertex Degree						
5	Euler Trails and Circuits						
6	Trees: Definitions, Properties.						
7	Examples						

Logo	INST		Teaching Process	Rev No.: 1.0
	Doc Code	SKIT .Ph5b1.F02		Date: 11-07-2018
	Title:	Course Plan		Page: 20 / 26

Copyright ©2017. cAAS. All right resenved.			
8	Routed Trees, Trees and Sorting,		
9	Weighted Trees and Prefix Codes		
10	Prefix Codes Examples		
11			
12			
13			
14			
15			
16			
c	Application Areas	CO	Level
1	Able to apply Graph theory for Computer network	CO 10	L3
2	Able to apply tree concepts to generate prefix codes to encode and decode text messages	CO9	L4
d	Review Questions	-	-
1	Define i)Bipertite Graph ii)Complete Bipertite Graph iii)Regular Graph iv) Complete Graph	CO10	L1
2	Define Graph Isomorphism. Verify the two Graphs are Isomorphic	CO10	L3
3	Show that Tree with n vertices has $\mathrm{n}-1$ edges	CO9	L2
4	Obtain optimal prefix code for the message ROAD IS GOOD	COg	L4
5	Define optimal tree and construct optimal tree for a given set of weights \{ 4,15,25,5,8,16 \}		L2
6			L5
7			L2
8			L3
9			L4
10			L1
11			L4
e	Experiences	-	-
1		CO 10	L2
2			
3			
4		CO9	L3
5			

E3. CIA EXAM - 3
a. Model Question Paper - 3
Crs Code: CS501PC Sem: 1 Marks: 30 Time: 75 minutes

Course: Design and Analysis of Algorithms

-	-	Note: Answer any $\mathbf{2}$ questions, each carry equal marks.	Marks	CO	Level
1	a	Discuss the solution of Konigsberg bridge problem	3	CO9	L1
	b	Define the following terms I) Complete Graph ii) Bipertite Graph iii) Spanning Tree iv) SubGraph	4	CO9	L2
	c	Define Graph Isomorphism. Verify the two Graphs are Isomorphic	8	CO9	L3

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions										
Crs Code:	17CS36	Sem: III		Marks:	5	Time:	90-120 minutes			
Course:	Discrete Mathematical Structures									
Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.										
SNo	USN	Assignment Description						Marks	CO	Level
1		Obtain optimal prefix code for the message LETTER RECIEVED						5	CO10	L2
2		Let $G(V, E)$ is simple graph with m edges and n vertices. Prove that i) $m \leqslant \frac{1}{2} n(n-1)$ ii) how many vertices and edges are there for $\mathrm{K}_{4,7}$ and $\mathrm{K}_{7,11}$ ii) for complete Graph Kn, m=n(n-1)/2						5	COg	L3
3		Define the following terms I) Spanning Tree ii) self Complementary Graph iii)Hypercube iv)Isomorphism								
4								5	COg	L2
5		Prove that if Graph is self complementary then n or $(\mathrm{n}-1)$ must be multiple of 4 .						6	COg	L4
6		Prove that in a Graph number of vertices of odd Degree is Even						4	COg	L3
7		If a tree has 4 vertices of degree 2 , one vertex of degree 3 , two vertices of degree 4, one vertex of degree 5, how many pendant vertices does it have?						6	C10	L3

Logo

INST		Teaching Process
Doc Code:	SKIT .Ph5b1.F02	Rev No.: 1.0
Title:	Course Plan	Page: $11-07-2018$

F. EXAM PREPARATION

1. University Model Question Paper

2. SEE Important Questions

Course: Crs Code:		Discrete Mathematical Structures					Month / Year Time:		May /2018	
		17CS36	Sem:	3	Marks:	100			180 minutes	
	Note	Answer all FIVE full questions. All questions carry equal marks.						-		
$\begin{array}{\|c\|} \hline \mathrm{Mo} \\ \text { dul } \\ \mathrm{e} \end{array}$	Qno.	Important Question						Marks	CO	Year

[^0]: Model Assignment Questions

